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Abstract

We consider linear prediction using only elementary linear algebra, and derive the
well-known formulas for the best linear predictor, the best linear unbiased predictor,
and the best linear unbiased estimator in this setting. Our approach is analogous to
that used by Parzen (1959) but without the machinery of reproducing kernel Hilbert
spaces. We also consider the application of linear prediction to the task of curve
fitting, and extend the theory of leave-p-out cross-validation developed by Dubrule
(1983) and Haslett & Hayes (1998) to include the best linear predictor and the best
linear unbiased estimator.
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1 Introduction

In linear prediction we seek a predictor for a random variable Z that is a linear combination
of the elements of a random process X = (Xi)i. The best linear predictor, denoted Z∗

[X],
minimizes the mean-square error E((Z − Z∗

[X])
2). Remarkably, we may find the best linear

predictor and its mean-square error even if we do not know the expectations E(Z) and
E(X). However, without knowledge of these expectations, we may not minimize the mean-
square error of a random variable subject to the constraint of unbiasedness. We therefore
assume that E is an element of a given space of linear functionals F and define the best linear
unbiased predictor, denoted Z†

[X], to be the linear predictor that minimizes the mean-square
error subject to the constraint that f(Z) = f(Z†

[X]) for all f ∈ F .
The standard way of finding the best linear predictor is by direct minimization of the

mean-square error under the assumption that X is finite. Similarly, the standard way
of finding the best linear unbiased predictor is by constrained minimization of the mean-
square error using the method of Lagrangian multipliers, again under the assumption that
X is finite (Goldberger 1962, Henderson 1963). Parzen (1959), however, gave a general
theory of linear prediction in a geometric setting. In this general theory, X is permitted
to be infinite and the predictor may be a convergent series in a Hilbert space of random
variables. The best linear predictor of Z and the best linear unbiased predictor of Z are
then the projections of Z onto the appropriate closed subspaces. In fact, Parzen works not
in a Hilbert space of random variables, but in a reproducing kernel Hilbert space that is
isomorphic to this Hilbert space of random variables (see also Wahba 2003). We will follow
Parzen in spirit, but without the machinery of reproducing kernel Hilbert spaces. For the
sake of clarity we will assume that X is finite and work directly in a linear vector space of
random variables. In our framework linear estimation is a special case of prediction, and
the best linear unbiased estimator of the mean of a random variable is a special case of the
best linear unbiased predictor.

Once we have a method for constructing a predictor we may use it to predict the
elements of a random process, Z := (Zi)i. This procedure seems not to have a name. Let
us call it ‘replication’, and let us call a family of predictors for the elements of Z a ‘replicator
for Z based on X’. If every element of a replicator is a linear predictor we will call that
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replicator a ‘linear replicator’. An important application of linear replication is in curve
fitting. We observe that any curve may be viewed as the realization of a random process,
Z, and view X as a subset of this random process (possibly contaminated by noise). If
we treat our data as a realization of X then we may compute the equivalent realization
of the replicator, which serves as the fitted curve. In turn, an important application of
curve fitting is in the construction of surrogate models for expensive computer simulations
(Sacks et al. 1989). In this context, and under the further assumption that Z has a Gaussian
distribution, it is often called ‘Gaussian-process emulation’ (Rasmussen & Williams 2006).

Although it is true that any curve may be viewed as the realization of a random process
this observation in itself is of limited use. For an arbitrary curve we have no idea of which
random process it is a realization. We must therefore make arbitrary assumptions about
this random process, its mean, second moments and distribution. Consequently, we must
be sure to test the performance of any replicator that we use for curve fitting. One way
of doing this is leave-p-out cross-validation, in which we partition our sample, of size n,
into two sets, one of size p and one of size n − p, and form predictors for the first set
based on the second. We must ensure that the residuals of the predictors are consistent
with our assumptions. In validating a replicator we may take advantage of a theory of
linear prediction residuals developed by Dubrule (1983) and Haslett & Hayes (1998) that
relates the leave-p-out best linear unbiased predictor residuals to the best linear unbiased
estimator residuals. We show that, just as in our framework linear estimation is a special
case of linear prediction, so in their framework the cross-validation of linear estimators is
a special case of the cross-validation of linear predictors.

2 Linear prediction

We will work in an inner product space, V := (V, 〈·, ·〉), consisting of a vector space, V ,
of second-order random variables on a common probability space, equipped with an inner
product, 〈·, ·〉, given by 〈P,Q〉 := E(PQ).1 We will use the notation ‘mom’ for the second
moment function, such that mom(P,Q) := E(PQ), in order to emphasize the analogy

1We will use upper-case letters to denote random variables and random processes, and lower-case letters
to denote their realizations.
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between the second moment function and the covariance function, cov. Note, however, that
the covariance function itself is not an inner product on V since it is not point-separating.
The inner product induces a norm, ‖ · ‖, on V , given by ‖P‖ :=

√
〈P, P 〉, whereas the

covariance induces a semi-norm, ‖ · ‖cov, on V , given by ‖P‖cov :=
√

cov(P, P ). Given a
random variable, Z, and a random process, X = (Xi)i≤n, a linear predictor of Z based on
X is any element of span(X) ⊆ V. We quantify the performance of a linear predictor, Y ,
using the mean-square error, MSE(Y ) = E((Z − Y )2) = ‖Z − Y ‖2, which we may think of
as the squared distance between Y and Z.

Remark 1. The vector space V is not given a distinguished basis, so we do not identify an
element of V with a vector (i.e. column vector) of real numbers. Nevertheless, elements of
span(X) are linear combinations of the elements of X. An element of span(X) is equal to
a product atX, where a ∈ Rn is a real vector and we view X ∈ V n as a vector of random
variables. Matrix notation is used here simply to represent summation. Given two random
variables atX ∈ span(X), where a ∈ Rn, and Y ∈ V, we have 〈atX,Y 〉 = at(〈Xi, Y 〉)i≤n.

2.1 Best linear predictor

Geometrically, the best linear predictor (BLP) of Z is the orthogonal projection of Z onto
span(X), which we will write as πspan(X)(Z). It is clear from the definition that the BLP is
unique, and that it exists because X is finite. We may write the orthogonal projection of
Z onto span(X) using the following lemma.

Lemma 2. Let A = (A, g) be a real vector space equipped with the positive-semidefinite
symmetric bilinear form g : A × A −→ R. Let B ⊆ A be a finite dimensional subspace
with a basis e = (ei)i≤n. Suppose that the restriction of g to B is positive definite. Then
orthogonal projection with respect to g of a ∈ A onto B is the map

πg
B : A −→ B

a 7−→ (g(a, ei))
t
i≤nG

−1
e e

where Ge = (g(ei, ej))i≤n,j≤n is the Gram matrix of e.

Proof. A proof is given by Bourbaki (1981, EVT V.13).
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We may also write the norm of any element of span(X) using the following lemma.

Lemma 3. Let A = (A, 〈·, ·〉) be a real inner product space with basis e = (ei)i≤n. Let
a ∈ A be a vector, and suppose that a is represented by the column vector v with respect to
e, so that a = vte. Then ‖a‖2 = vtGev, where Ge = (〈ei, ej〉)i≤n,j≤n is the Gram matrix of
e.

Proof. A proof is given by Lang (2002, XIII, C6).

Note that the second-moment matrix of X, namely R = (〈Xi, Xj〉)i≤n,j≤n, is the Gram
matrix of X. If X is linearly independent then R is invertible (as we assume henceforth)
and the following proposition is an immediate consequence of Lemmas 2 and 3.

Proposition 4. The BLP of Z based on X = (Xi)i≤n is

Z∗
[X] = ρtR−1X,

where ρ = (mom(Z,Xi))i≤n. It has mean-square error

MSE(Z∗
[X]) = mom(Z,Z)− ρtR−1ρ.

Remark 5. It is worth emphasizing that the BLP is, in general, a biased predictor. Specif-
ically, bias(Z∗

[X]) = E(Z − Z∗
[X]) = E(Z)− ρtR−1 E(X).

2.2 Best linear unbiased predictor

We now seek an unbiased linear predictor of Z. For this we will require a generalized
notion of unbiasedness. Recall that if Y is an unbiased predictor for Z then E(Y ) = E(Z),
and note that the expectation function, E : V −→ R is a continuous linear functional on
V, i.e. an element of the continuous dual space V′. Let F ⊆ V′ be a subspace of the
continuous dual space. We will say that a linear predictor of Z, namely Y , is F -unbiased if
f(Y ) = f(Z) for all f ∈ F . We will call any element of F a ‘pseudoexpectation function’
and we will call F itself the ‘space of pseudoexpectation functions’. From now on, we will
assume that the expectation function, E, is an element of F . Then any predictor, Y , that
is F -unbiased is necessarily unbiased (i.e. E-unbiased).
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Figure 1: A schematic representation of Z∗
[X], the best linear predictor of Z based on X

(Prop. 4), and Z†
[X], the best linear unbiased predictor of Z based on X (Prop. 6).

The best linear unbiased predictor (BLUP) of Z based on X is the linear predictor
Y that is F -unbiased and minimizes the mean-square error among all F -unbiased linear
predictors. We denote the BLUP of Z by Z†

[X]. The set of F -unbiased linear predictors of
Z is in fact an affine subspace of V , namely

U := {Y ∈ span(X) | f(Y ) = f(Z), for all f ∈ F}.

Geometrically, then, the BLUP of Z is the orthogonal projection of Z onto U , which we
write as πU(Z).

The BLUP of Z is shown schematically in Figure 1. Note that the space V admits a
decomposition as an orthogonal direct sum of the subspace, C, of centred random variables
and the subspace of constant random variables, which we identify with R, i.e. V = C⊕R.2

Because projections compose, the BLUP is not only the orthogonal projection of Z onto
U but also the projection of the BLP onto U , i.e. Z†

[X] = πU(Z
∗
[X]). The BLUP does not

necessarily exist. Indeed it exists if and only if U is not empty. However, when it exists it
is unique.

We will require two assumptions: (1) that the restriction of the covariance function
to span(X) is an inner product, which, for convenience, we will denote 〈·, ·〉cov, such that
〈P,Q〉cov = cov(P,Q) for all P,Q ∈ span(X), and (2) that F is of finite-dimension and
has a basis f = (fq)q≤m. Given the first assumption, the covariance matrix of X, namely
K = (〈Xi, Xj〉cov)i≤n,j≤n, is in fact the Gram matrix of X, and is positive-definite, hence

2Note that the orthogonal projection of V onto R is the expectation.
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invertible since a matrix is invertible if and only if it is positive definite. Given the second
assumption, by the Riesz representation theorem there exists for each fq ∈ V′ a random
variable Eq ∈ span(X) such that 〈Eq, Y 〉cov = fq(Y ) for all Y ∈ span(X). Then (Eq)q≤m is
a basis for the subspace M ⊆ span(X) that corresponds to F . We then find the following.

Proposition 6. The BLUP of Z based on X = (Xi)i≤n is

Z†
[X] = σtK−1X − σtK−1Φt(ΦK−1Φt)−1ΦK−1X + φt(ΦK−1Φt)−1ΦK−1X. (1)

where σ = (cov(Z,Xi))i≤n, φ = (fq(Z))q≤m, and Φ = (fq(Xi))q≤m,i≤n. It has mean-square
error

MSE(Z†
[X]) = cov(Z,Z)− σtK−1σ + (φ− ΦK−1σ)t(ΦK−1Φt)−1(φ− ΦK−1σ). (2)

Proof. Define the cov-orthogonal projection of Z onto a subspace S ⊆ V to be the element
πcov
S (Z) that minimizes the semi-norm ‖Z − πcov

S (Z)‖cov among elements of S. For any
Y ∈ U , we have

‖Z − Y ‖2cov = mom(Z − Y, Z − Y )− E(Z − Y )2 = ‖Z − Y ‖2.

It follows that the BLUP is both the projection and the cov-orthogonal projection of Z onto
U . Denote Z‡ := πcov

span(X)(Z). Since projections compose, Z†
[X] = πcov

U (Z‡). Next, denote
W := {Y ∈ span(X) | f(Y ) = 0, for all f ∈ F}. Then U = W + A for every A ∈ U ; and
for any Y ∈ span(X), we have πcov

U (Y ) = πcov
W (Y − A) + A. Therefore,

Z†
[X] = (Id− πcov

M )(Z‡ − A) + A

= Z‡ − (〈Z‡ − A,Eq〉cov)tq≤mG
−1
E E

= Z‡ − σtK−1ΦtG−1
E E + φtG−1

E E.

where GE := (〈Ep, Eq〉cov)p≤m,q≤m. The result follows from the facts E = ΦK−1X and
GE = ΦK−1Φt, and Lemma 2. By Pythagoras’ theorem we have MSE(Z†

[X]) = ‖Z‖2cov −

‖Z‡‖2cov + ‖Z‡ − Z†
[X]‖2cov. By Lemma 3, we have ‖Z‡‖2cov = σtK−1σ and ‖Z‡ − Z†

[X]‖2cov =

(φ− ΦK−1σ)tG−1
E (φ− ΦK−1σ).
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2.3 Prediction and estimation

Whereas a predictor is a random variable that stands in for another random variable, an
estimator is a random variable that stands in for a constant. But any constant may be
viewed as a trivial (i.e. constant) random variable. Estimation is therefore a special case
of prediction. We are often interested in finding an estimator for the expected value of a
random variable. Consider a random variable Z. We may always write this as the sum of its
expected value and another, centred random variable, i.e. we may always write Z = Θ+A,
where Θ := E(Z), and A := Z −E(Z). We call the BLUP of Θ based on X the best linear
unbiased estimator (BLUE) of Θ based on X. By the BLUP formula (Prop. 6) we find that
the BLUE is

Θ†
[X] = φt(ΦtK−1Φ)−1ΦK−1X

with MSE(Θ†
[X]) = φt(ΦtK−1Φ)−1φ. We recognize Θ†

[X] from the Gauss–Markov theorem
as the generalized least-squares estimator of Θ based on X.

Remark 7. Following Goldberger (1962) we may rewrite the BLUP formula as

Z†
[X] = Θ†

[X] + σtK−1D,

where D := X − Φt(ΦtK−1Φ)−1ΦK−1X. We recognize the i-th element of D as Di =

Xi − Θi
†
[X], namely the residual of the BLUE of the expected value of Xi based on X. In

this way we see that the BLUP of Z is the sum of the BLUE of the expected value of Z
based on X and a weighted sum of the residuals of the best linear unbiased estimators of
the the expected values of X1, . . . , Xn based on X.

2.4 Prediction intervals

Having found a predictor we might in turn want to find a prediction interval for it. Failing
that, we might want to find bounds for such a prediction interval.

2.4.1 A prediction interval

Let Y be a predictor for Z. Suppose that we have a model for the distribution of Z− (Y −

bias(Y )) and, furthermore, that we have a pair of γ critical values for this model, c1 and
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c2, such that

c1
√

var(Z − (Y − bias(Y ))) ≤ Z − (Y − bias(Y )) ≤ c2
√
var(Z − (Y − bias(Y ))) (3)

with probability γ. Note that var(Z − (Y − bias(Y ))) = var(Y −Z) since bias(Y ) is a real
number. Hence

[Y − bias(Y ) + c1
√

var(Z − Y ), Y − bias(Y ) + c2
√

var(Z − Y )] (4)

is a γ prediction interval for Z. The bias-variance decomposition gives MSE(Y ) = var(Z−

Y ) + (bias(Y ))2. Of course if Y is the BLUP of Z then bias(Y ) = 0.

2.4.2 Bounds for a prediction interval

Suppose that we do not have a model for the distribution of Z − Y , still less a pair of γ
critical values for such a model. We may use the empirical rule in the form of Chebyshev’s
inequality or the Vysochanskij–Petunin inequality to construct bounds for a prediction
interval. Then

λ
√
var(Z − Y ) ≤ Z − (Y − bias(Y )) ≤ λ

√
var(Z − Y ) (5)

where λ = 1/
√
1− γ or, for the case of unimodal Z − Y , λ = 2/(3

√
1− γ) so long as

Z 6= Y .

Remark 8 (confidence intervals). Let Y be an estimator for Θ, the mean of Z. We call
a prediction interval for Y a ‘confidence interval’. A special case of equation 4 is the
well-known γ confidence interval for the BLUE of the mean of Z:

[Θ†
[X] + c1

√
φt(ΦtK−1Φ)−1φ,Θ†

[X] + c2
√
φt(ΦtK−1Φ)−1φ].

2.5 Knowns and unknowns

As it stands the BLP (resp. BLUP) formula gives an abstract relationship between random
variables, namely Z∗

[X] and X (resp. Z†
[X] and X). The usefulness of this relationship lies in

our ability to construct a predictor for Z and its realizations. Given a random vector, X,
we would like to know Z∗

[X] (resp. Z†
[X]) and given a realization of X, namely x, we would
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like to know the corresponding realization of Z∗
[X] (resp. Z†

[X]), namely z∗[X] (resp. z†[X]). In
the first case, the BLP (resp. BLUP) is a function V n −→ V , mapping X 7−→ Z∗

[X], and
we think of Z as fixed. In the second case the BLP (resp. BLUP) is a function Rn −→ R,
mapping x 7−→ z†[X]. We say a function is known if we have an algorithm for computing, to
arbitrary precision, the image of an arbitrary element of its domain. Otherwise we say that
a function is unknown. The BLP (resp. BLUP) formula is a linear combinations of random
variables Xi with coefficients formed from various moments of X. In order to know Z∗

[X]

(resp. Z†
[X]) or z∗[X] (resp. z†[X]) we must therefore (i) know how to identity elements of V n

or Rn and (ii) know the coefficients in the BLP formula (resp. BLUP formula).
We imagine the BLP formula (BLUP formula) being used for either computing the

distribution of Z∗
[X] (resp. Z†

[X]), or for computing a realization z∗[X] (resp. z†[X]). For the
first task we identify an element X ∈ V n by its joint distribution. The joint distribution
itself allows us to compute the coefficients by evaluating the appropriate integrals, and in
turn the PDF of Z∗

[X] (resp. Z†
[X]) can be computed in the normal way, as the distribution of

a linear combination of random variables. For the second task we identify an element of Rn

by a real n-tuple. To compute the coefficients we do not need to know the joint distribution
of X. Instead of identifying X by its joint distribution we identify it by indexing its elements
X = (Xi)i. The random vector X = (Xi)i≤n is indexed by the set {1, . . . , n}. Extending
this indexing set to T := {1, . . . , n, n + 1}, and writing Xn+1 := Z, we may form the
random vector X ′ = (Xi)i≤n+1. We consider the mean-value function m : T −→ R given by
m(i) := E(Xi), the second-moment kernel r : T ×T −→ R given by r(i, j) := mom(Xi, Xj),
and covariance kernel k : T × T −→ R given by k(i, j) := cov(Xi, Xj). We imagine the
following three states of knowledge.

(K1) We know the second-moment kernel, r, but not the mean-value function, m, or co-
variance kernel, k. In this situation the BLP and the MSE of the BLP are known,
but the bias of the BLP, the BLUP and the MSE of the BLUP are not known.

(K2) We know the covariance kernel, k, but not the mean-value function, m, or second-
moment function, r. In this situation the BLUP and MSE of the BLUP are known,
but the BLP, the MSE of the BLP, and the bias of the BLP are not known.
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(K3) We know the mean-value function, m, and either (equivalently, both) the second-
moment kernel, r, or covariance kernel, k. In this situation the BLP, the MSE of the
BLP, and the bias of the BLP, along with the BLUP and the MSE of the BLUP, are
all known.

Remark 9. In case K3 we may centre Z and X by subtracting E(Z) and E(X) respectively.
Furthermore, we may choose the very simplest space of pseudoexpectation functions, F ,
namely the space generated by the single element E. The second and third terms in the
BLUP formula (eq. 1) then vanish, as does the third term in its MSE formula (eq. 2). For
centred random variables, the second-moment kernel and covariance kernel are identical,
and hence we have that σ = ρ and K = R. Therefore, in this case, the BLP and the BLUP
coincide.

Remark 10. It is well known that the best predictor of a random variable Z based on X

is the conditional expectation E(Z | X = x), and that if Z and X are centred with joint
Gaussian distribution then the best predictor of Z based on X is the BLP of Z based
on X. By forming the expectation of a joint Gaussian random vector in this way we may
heuristically derive the BLP or the BLUP under the assumption that our state of knowledge
is described by case K3 (Rem. 9). This is the derivation used by Rasmussen & Williams
(2006). It provides a useful shortcut but it somewhat obscures the difference between the
BLP and BLUP as well as the fact that the BLP and BLUP formulas hold for second-order
random variables in general.

Remark 11. It is remarkable that we can know the BLP and BLUP, which by definition
minimize the MSE, E((Y − Z)2) for Y in span(X) and U respectively, even when we do
not know the expectation, E, as in cases K1 and K2. It is remarkable furthermore that
having found the BLP and BLUP, we may in turn find their mean-square errors.

3 Curve fitting

Once we have a method for constructing a predictor we may use it to predict the elements
of a random process, Z := (Zi)i. We will call a family of predictors for the elements of
Z a ‘replicator’, and the procedure of constructing replicators we will call ‘replication’.
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As we have noted, an important use of replication is curve fitting and in particular the
fitting of curves to the outputs of expensive computer simulations (Sacks et al. 1989).3

We adopt the conceit that a curve, z, is the realization of a random process Z = (Zt)t∈T ,
indexed by the domain of z which is denoted T ⊆ Rd for some d. Let (Zti)i≤n be a
finite sample of Z, let (Hi)i≤n be a centred random vector, and consider the random
vector X := (Zti + Hi)i≤n, which we view as a sample of Z contaminated by noise. We
call a replicator for Z based on X a ‘smoother’ (also ‘filter’). In the case that Hi = 0

for all i we call such a smoother an ‘interpolator’. If the elements of a smoother (resp.
interpolator) are all linear predictors we call it a ‘linear smoother based on X’ (resp. ‘linear
interpolator based on X’). Given a realization of X, namely a data set x = (xi)i≤n, we may
compute the equivalent realization of the smoother or interpolator. In fitting a curve to
the output of computer simulations, which have no errors, we are interested in constructing
interpolators. It is very common to construct such an interpolator using the BLP or BLUP:
Z∗

[X] := (Zt
∗
[X])t∈T , or Z†

[X] := (Zt
†
[X])t∈T .

It is trivially true that an arbitrary curve is the realization of some random process.
But this observation in itself is vacuous. We do not know which random process, and
hence do not find ourselves in any of the regimes we have considered (Sec. 2.5). We do
not know the distribution of this random process. In particular, we do not know its mean,
second-moments or covariance. We must therefore choose the mean-value function, second-
moment kernel and covariance kernel arbitrarily. This arbitrariness should be alarming,
and alert us to the fact that we must test the performance of our linear smoother.

Remark 12. In using the BLP or BLUP as a linear smoother we are not doing regression. In
regression we seek an estimator for the mean of a random variable. In the case of the BLP
we need know nothing about the mean (case K1), and in the case of the BLUP we perform
a regression (by finding the BLUE) to which we add a weighted sum of the residuals (case
K2 and Rem. 7).

3Although it is an abuse of language, by ‘curve’ we mean the graph of a function Rd −→ R, perhaps
only partially defined.
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3.1 Validation

The process of testing the performance of a linear smoother is known as ‘validation’. Two
common types of validation are cross-validation and leave-p-out cross-validation. Cross-
validation is a method for validating predictors based on a fixed X. Alongside X we take
another sample of Z, namely X ′ = (Zj)j≤p, which we call the ‘validation set’, and construct
a predictor for each Zj ∈ X ′ based on X, namely Yj[X]. We define the cross-validation (CV)
predictor residual of Yj[X] to be

d(Yj[X]) = Zj − Yj[X],

and, for a tuple Y[X] = (Yj[X])j≤p of predictors, we define d(Y[X]) := (d(Yj[X]))j≤p. If the
predictors, Yj[X], are estimators for the means of each Zj then we define the cross-validation
(CV) estimator residual of Yj[X] to be

e(Yj[X]) = Zj − Yj[X],

and, for a tuple Y[X] = (Yj[X])j≤p of estimators, we define e(Y[X]) := (e(Yj[X]))j≤p. If
the distribution of the CV predictor (resp. estimator) residuals are known then we may
construct prediction (resp. confidence) intervals for them, otherwise we may construct
bounds for their prediction (resp. confidence) intervals (Sec. 2.4). The behaviour of the
observed predictor (resp. estimator) residuals should be consistent with the assumptions
we have made about their distribution (equivalently, the assumptions we have about the
distribution of Z).

In leave-p-out cross-validation, instead of using a validation set distinct from X, we
partition X into a set containing p elements, XP , and a set containing n − p elements,
XP̄ . We construct a predictor for each Xi ∈ XP based on XP̄ , namely Yi[XP̄ ]. Then we
define the leave-p-out cross-validation predictor residual to be d(YP [XP̄ ]), where YP [XP̄ ] =

(Yi[XP̄ ])Xi∈XP
. Again, the observed predictor residuals should be consistent with our as-

sumptions about their distribution. Dubrule (1983) and Haslett & Hayes (1998) pro-
vided a theory of linear prediction residuals. This relates the leave-p-out BLUP residuals,
d(XP

†
[XP̄ ]), to the BLUE residuals, d(Θ†

[X]). The theory may be straightforwardly extended
to provide expressions for the leave-p-out BLP and BLUE residuals. First, we consider the
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case of the BLP. For the sake of convenience we partition R, S := R−1, and X as

R =

RPP RPP̄

RP̄P RP̄ P̄

 , S =

SPP SPP̄

SP̄P SP̄ P̄

 , X =

XP

XP̄

 .

Proposition 13. The leave-p-out BLP is

XP
∗
[XP̄ ]

= −(SPP )
−1SPP̄XP̄

with variance var(XP
∗
[XP̄ ]) = (SPP )

−1SPP̄ (RP̄ P̄ −E(XP̄ ) E(XP̄ )
t)SP̄P (SPP )

−1. The leave-p-
out BLP residual is

d(XP
∗
[P̄ ]
) = (SPP )

−1[SX]P

where [SX]P is the vector consisting of the first p rows of SX. Its variance is var(d(XP
∗
[P̄ ])) =

(SPP )
−1 − (SPP )

−1 E([SX]P ) E([SX]P )
t(SPP )

−1.

Proof. Denote A := (RP̄ P̄ )
−1XP̄ ; then both XP̄

∗
[XP̄ ] = RP̄ P̄A and XP

∗
[XP̄ ] = RPP̄A. Since

XP̄
∗
[XP̄ ] = XP̄ , we have RPP RPP̄

RP̄P RP̄ P̄

0

A

 =

XP
∗
[XP̄ ]

XP̄

 . (6)

Pre-multiply this equation by S and extract the first p rows to find that XP
∗
[XP̄ ] = −(SPP )

−1SPP̄XP̄

with variance var(XP
∗
[XP̄ ]) = (SPP )

−1SPP̄ (RP̄ P̄ −E(XP̄ ) E(XP̄ )
t)SP̄P (SPP )

−1. The leave-p-
out CV residuals follow immediately.

Second, we consider the case of the BLUP. Write the BLUP of X based on X as
X†

[X] = ΦtB +KC where B := (ΦK−1Φt)−1ΦK−1X, C := K−1D, and D := X − (Θi
†
[X])i,

consistent with Remark 7. Also we define the vector β and matrix Q such that B = βX

and C = QX. We partition K, Φ, Q, β, and X as

K =

KPP KPP̄

KP̄P KP̄ P̄

 ,Φ =
[
ΦP ΦP̄

]
, Q =

QPP QPP̄

QP̄P QP̄ P̄

 , β =
[
βP βP̄

]
, X =

XP

XP̄

 .

Proposition 14. The leave-p-out BLUP is

XP
†
[XP̄ ] = −(QPP )

−1QPP̄XP̄

14



with variance var(XP
†
[XP̄ ]) = (QPP )

−1QPP̄KP̄ P̄QP̄P (QPP )
−1. The leave-p-out BLUP resid-

ual is

d(XP
†
[P̄ ]) = (QPP )

−1[K−1D]P

where [K−1D]P is the vector consisting of the first p rows of K−1D. Its variance is
var(d(XP

†
[P̄ ])) = (QPP )

−1.

Proof. We closely follow Haslett & Hayes (1998). Note that there exist tuples B′ and C ′

(where XP̄
†
[XP̄ ] = (ΦP̄ )

tB′ +KP̄ P̄C
′) such that

KPP KPP̄ (ΦP )
t

KP̄P KP̄ P̄ (ΦP̄ )
t

ΦP ΦP̄ 0



0

C ′

B′

 =


XP

†
[XP̄ ]

XP̄

0

 . (7)

Pre-multiply this equation by L, where

L :=

K Φt

Φ 0

−1

=

Q βt

β − var(B)

 ,

and extract the first p rows to find that XP
†
[XP̄ ] = −(QPP )

−1QPP̄XP̄ with variance var(XP
†
[XP̄ ]) =

(QPP )
−1QPP̄KP̄ P̄QP̄P (QPP )

−1. The leave-p-out CV residuals follow immediately.

Remark 15. We may find the leave-p-out BLUE and leave-p-out BLUE residual using the
same approach. Again, pre-multiply equation 7 by L and this time extract the final m rows
to find that

B′ = B − βP (QPP )
−1[K−1D]P .

The leave-p-out BLUE residual is then

e(ΘP
†
[XP ]) = DP + (ΦP )

tβP (QPP )
−1[K−1D]P

since DP = XP−(ΦP )
tB. In the case that K = σ2I, where σ2 is some constant variance, this

reduces to the well-known expression for the ordinary least-squares leave-p-out estimation
residuals: e(ΘP

†
[XP̄ ]) = (I −HPP )

−1DP , where H := Φt(ΦtΦ)−1Φ.

15



Remark 16. It is common to assume (Rasmussen & Williams 2006) that the fitted curve is
the realization of a centred Gaussian random process with second-moment kernel (equiva-
lently, covariance kernel) belonging to one of a standard family of kernels (for example, the
Matérn family). In many practical situations this results in predictors that pass validation.
The assumption of Gaussianity allows us to compute confidence intervals for the elements
of the replicator, but is hard to validate for small sample sizes.
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